Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Elife ; 122023 06 13.
Article in English | MEDLINE | ID: covidwho-20242416

ABSTRACT

Coronavirus disease-19 (COVID-19) causes immune perturbations which may persist long term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate, or severe disease and investigated whether it associates with long COVID. At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67, and granzyme B, and elevated plasma levels of interleukin-4 (IL-4), IL-7, IL-17, and tumor necrosis factor-alpha (TNF-α) compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation. Patients with severe disease reported a higher number of long COVID symptoms which did not however correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex, and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.


Subject(s)
COVID-19 , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , SARS-CoV-2/metabolism , Cytokines/metabolism
2.
Indian J Hematol Blood Transfus ; : 1-10, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2230621

ABSTRACT

Background: Immune dysregulation plays a key role in determining COVID-19 disease severity. We aimed to analyze the T cell activation profile in COVID - 19 cases and its predictive role in disease severity and outcome. Material & methods: This was a prospective observational pilot study from a tertiary care COVID-19 hospital. Peripheral blood samples obtained between the fifth and seventh day of COVID-19 illness, were subjected to lymphocyte subset analysis using multicolor flowcytometry using a single tube, 8 antibodies (CD45, CD19, CD3, CD4, CD8, CD38, HLADR, and CD56) analysis. Correlation between lymphocyte subset analysis and clinical profile was determined. Results: 26 patients including 11 with mild disease and 15 with severe disease were enrolled. The median age was 58 years (range: 33-81), with a male: female ratio of 1.36:1. Significant lymphopenia was observed in the severe group compared to the mild group (p < 0.02). The absolute numbers of CD3+, CD4+, CD8 + T cells, B cells, and NK cells were significantly reduced in the severe group as compared to the mild group (p < 0.05). In patients with severe disease, the proportion of CD8 + and CD4 + T cells were significantly higher than those in patients with mild disease (p = 0.0372). Using ROC analysis, a CD4:8 T cell ratio of ≥ 2.63 and an activated (CD38 + HLA-DR+) CD8 T cell proportion of > 15.85% of the total CD8 T cell population, significantly determined the severe disease category. Conclusions: Severe COVID-19 is associated with severe lymphopenia, altered CD4/CD8 ratio and markedly increased CD8 T cell activation profile. Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-022-01558-6.

3.
Trends Microbiol ; 31(6): 644-656, 2023 06.
Article in English | MEDLINE | ID: covidwho-2183822

ABSTRACT

Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.


Subject(s)
COVID-19 , Immunity, Innate , Humans , T-Lymphocytes , SARS-CoV-2 , Inflammation
4.
Front Immunol ; 13: 1034159, 2022.
Article in English | MEDLINE | ID: covidwho-2198881

ABSTRACT

Introduction: Despite numerous efforts to describe COVID-19's immunological landscape, there is still a gap in our understanding of the virus's infections after-effects, especially in the recovered patients. This would be important to understand as we now have huge number of global populations infected by the SARS-CoV-2 as well as variables inclusive of VOCs, reinfections, and vaccination breakthroughs. Furthermore, single-cell transcriptome alone is often insufficient to understand the complex human host immune landscape underlying differential disease severity and clinical outcome. Methods: By combining single-cell multi-omics (Whole Transcriptome Analysis plus Antibody-seq) and machine learning-based analysis, we aim to better understand the functional aspects of cellular and immunological heterogeneity in the COVID-19 positive, recovered and the healthy individuals. Results: Based on single-cell transcriptome and surface marker study of 163,197 cells (124,726 cells after data QC) from the 33 individuals (healthy=4, COVID-19 positive=16, and COVID-19 recovered=13), we observed a reduced MHC Class-I-mediated antigen presentation and dysregulated MHC Class-II-mediated antigen presentation in the COVID-19 patients, with restoration of the process in the recovered individuals. B-cell maturation process was also impaired in the positive and the recovered individuals. Importantly, we discovered that a subset of the naive T-cells from the healthy individuals were absent from the recovered individuals, suggesting a post-infection inflammatory stage. Both COVID-19 positive patients and the recovered individuals exhibited a CD40-CD40LG-mediated inflammatory response in the monocytes and T-cell subsets. T-cells, NK-cells, and monocyte-mediated elevation of immunological, stress and antiviral responses were also seen in the COVID-19 positive and the recovered individuals, along with an abnormal T-cell activation, inflammatory response, and faster cellular transition of T cell subtypes in the COVID-19 patients. Importantly, above immune findings were used for a Bayesian network model, which significantly revealed FOS, CXCL8, IL1ß, CST3, PSAP, CD45 and CD74 as COVID-19 severity predictors. Discussion: In conclusion, COVID-19 recovered individuals exhibited a hyper-activated inflammatory response with the loss of B cell maturation, suggesting an impeded post-infection stage, necessitating further research to delineate the dynamic immune response associated with the COVID-19. To our knowledge this is first multi-omic study trying to understand the differential and dynamic immune response underlying the sample subtypes.


Subject(s)
Antigen Presentation , COVID-19 , Humans , Bayes Theorem , Multiomics , SARS-CoV-2
5.
Front Immunol ; 13: 931039, 2022.
Article in English | MEDLINE | ID: covidwho-2141950

ABSTRACT

COVID-19 is being extensively studied, and much remains unknown regarding the long-term consequences of the disease on immune cells. The different arms of the immune system are interlinked, with humoral responses and the production of high-affinity antibodies being largely dependent on T cell immunity. Here, we longitudinally explored the effect COVID-19 has on T cell populations and the virus-specific T cells, as well as neutralizing antibody responses, for 6-7 months following hospitalization. The CD8+ TEMRA and exhausted CD57+ CD8+ T cells were markedly affected with elevated levels that lasted long into convalescence. Further, markers associated with T cell activation were upregulated at inclusion, and in the case of CD69+ CD4+ T cells this lasted all through the study duration. The levels of T cells expressing negative immune checkpoint molecules were increased in COVID-19 patients and sustained for a prolonged duration following recovery. Within 2-3 weeks after symptom onset, all COVID-19 patients developed anti-nucleocapsid IgG and spike-neutralizing IgG as well as SARS-CoV-2-specific T cell responses. In addition, we found alterations in follicular T helper (TFH) cell populations, such as enhanced TFH-TH2 following recovery from COVID-19. Our study revealed significant and long-term alterations in T cell populations and key events associated with COVID-19 pathogenesis.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Hospitalization , Humans , Immunoglobulin G , SARS-CoV-2
6.
Front Immunol ; 13: 896310, 2022.
Article in English | MEDLINE | ID: covidwho-2114267

ABSTRACT

To prevent SARS-CoV-2 infections and generate long-lasting immunity, vaccines need to generate strong viral-specific B and T cell responses. Previous results from our lab and others have shown that immunizations in the presence of an OX40 agonist antibody lead to higher antibody titers and increased numbers of long-lived antigen-specific CD4 and CD8 T cells. Using a similar strategy, we explored the effect of OX40 co-stimulation in a prime and boost vaccination scheme using an adjuvanted SARS-CoV-2 spike protein vaccine in C57BL/6 mice. Our results show that OX40 engagement during vaccination significantly increases long-lived antibody responses to the spike protein. In addition, after immunization spike protein-specific proliferation was greatly increased for both CD4 and CD8 T cells, with enhanced, spike-specific secretion of IFN-γ and IL-2. Booster (3rd injection) immunizations combined with an OX40 agonist (7 months post-prime) further increased vaccine-specific antibody and T cell responses. Initial experiments assessing a self-amplifying mRNA (saRNA) vaccine encoding the spike protein antigen show a robust antigen-specific CD8 T cell response. The saRNA spike-specific CD8 T cells express high levels of GrzmB, IFN-γ and TNF-α which was not observed with protein immunization and this response was further increased by the OX40 agonist. Similar to protein immunizations the OX40 agonist also increased vaccine-specific CD4 T cell responses. In summary, this study compares and contrasts the effects and benefits of both protein and saRNA vaccination and the extent to which an OX40 agonist enhances and sustains the immune response against the SARS-CoV-2 spike protein.


Subject(s)
COVID-19 , Vaccines , Animals , COVID-19/prevention & control , Humans , Interleukin-2 , Mice , Mice, Inbred C57BL , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha
7.
J Intern Med ; 292(5): 816-828, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2001700

ABSTRACT

BACKGROUND: T-cell activation is associated with an adverse outcome in COVID-19, but whether T-cell activation and exhaustion relate to persistent respiratory dysfunction and death is unknown. OBJECTIVES: To investigate whether T-cell activation and exhaustion persist and are associated with prolonged respiratory dysfunction and death after hospitalization for COVID-19. METHODS: Plasma and serum from two Norwegian cohorts of hospitalized patients with COVID-19 (n = 414) were analyzed for soluble (s) markers of T-cell activation (sCD25) and exhaustion (sTim-3) during hospitalization and follow-up. RESULTS: Both markers were strongly associated with acute respiratory failure, but only sTim-3 was independently associated with 60-day mortality. Levels of sTim-3 remained elevated 3 and 12 months after hospitalization and were associated with pulmonary radiological pathology after 3 months. CONCLUSION: Our findings suggest prolonged T-cell exhaustion is an important immunological sequela, potentially related to long-term outcomes after severe COVID-19.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lymphocyte Activation , SARS-CoV-2 , T-Lymphocytes
8.
Biomed J ; 45(2): 219-226, 2022 04.
Article in English | MEDLINE | ID: covidwho-1797124

ABSTRACT

This issue of Biomedical Journal provides the reader with articles concerning the latest understanding of Tourette syndrome (TS), the relation to genetic predisposition, defects in the dopaminergic system, and related comorbidities which further complications like sleep disruption. Treatment approaches for TS, attention deficit hyperactivity disorder and developmental coordination disorder are discussed. The second section of this issue offers insights into inside out integrin activation and its link to T cell activation, demonstrates how polarity in immune cells allows adoption to specialized functions, and describes the endosomal signaling of internalized T cell receptors (TCRs). The link between mutations in TCR signaling and immunodeficiencies is elucidated, as well as the interactions of thymocyte-expressed molecule involved in selection in T cell development. Additionally, we learn about a potential biomarker for colorectal cancer, screening tools for determining frailty in older adults, surgical approaches in spinal metastases, the influence of autophagy on mating behavior, and the effect of nitrite administration on SNARE proteins associated with insulin secretion. Finally, parameters for surgery in breast cancer are discussed, as well as gender and age dependent pain perception in a lysosomal storage disease, and the use of laser meridian massage in opioid use disorder. Three letters complement this issue, one concerning neuroimaging in pediatric COVID-19 patients, and two discussing the role of cancer antigen-125 and renal impairment in ovarian cancer patients.


Subject(s)
COVID-19 , Obsessive-Compulsive Disorder , Tics , Tourette Syndrome , Aged , Child , Humans , Obsessive-Compulsive Disorder/complications , Tics/complications , Tourette Syndrome/complications , Tourette Syndrome/diagnosis , Tourette Syndrome/therapy
9.
Curr Res Transl Med ; 70(4): 103348, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1796171

ABSTRACT

To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and neutralization assays using pseudo-virus, and live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters from SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19 Vaccines , Antibodies, Neutralizing , Antibodies, Viral
10.
Adv Mater ; 34(29): e2109661, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1763175

ABSTRACT

The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Nanowires , Antiviral Agents , COVID-19/diagnosis , Humans , SARS-CoV-2 , T-Lymphocytes
11.
J Allergy Clin Immunol ; 149(5): 1592-1606.e16, 2022 05.
Article in English | MEDLINE | ID: covidwho-1739828

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a potentially life-threatening sequela of severe acute respiratory syndrome coronavirus 2 infection characterized by hyperinflammation and multiorgan dysfunction. Although hyperinflammation is a prominent manifestation of MIS-C, there is limited understanding of how the inflammatory state of MIS-C differs from that of well-characterized hyperinflammatory syndromes such as hemophagocytic lymphohistiocytosis (HLH). OBJECTIVES: We sought to compare the qualitative and quantitative inflammatory profile differences between patients with MIS-C, coronavirus disease 2019, and HLH. METHODS: Clinical data abstraction from patient charts, T-cell immunophenotyping, and multiplex cytokine and chemokine profiling were performed for patients with MIS-C, patients with coronavirus disease 2019, and patients with HLH. RESULTS: We found that both patients with MIS-C and patients with HLH showed robust T-cell activation, markers of senescence, and exhaustion along with elevated TH1 and proinflammatory cytokines such as IFN-γ, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10. In comparison, the amplitude of T-cell activation and the levels of cytokines/chemokines were higher in patients with HLH when compared with patients with MIS-C. Distinguishing inflammatory features of MIS-C included elevation in TH2 inflammatory cytokines such as IL-4 and IL-13 and cytokine mediators of angiogenesis, vascular injury, and tissue repair such as vascular endothelial growth factor A and platelet-derived growth factor. Immune activation and hypercytokinemia in MIS-C resolved at follow-up. In addition, when these immune parameters were correlated with clinical parameters, CD8+ T-cell activation correlated with cardiac dysfunction parameters such as B-type natriuretic peptide and troponin and inversely correlated with platelet count. CONCLUSIONS: Overall, this study characterizes unique and overlapping immunologic features that help to define the hyperinflammation associated with MIS-C versus HLH.


Subject(s)
COVID-19 , Lymphohistiocytosis, Hemophagocytic , COVID-19/complications , Child , Cytokines/metabolism , Humans , Ligands , Lymphohistiocytosis, Hemophagocytic/diagnosis , Systemic Inflammatory Response Syndrome , Vascular Endothelial Growth Factor A
12.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1683718

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

13.
Front Microbiol ; 12: 806902, 2021.
Article in English | MEDLINE | ID: covidwho-1674357

ABSTRACT

Sex differences in immune responses had been reported to correlate with different symptoms and mortality in the disease course of coronavirus disease 2019 (COVID-19). However, whether severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection interferes with females' fertility and causes different symptoms among pregnant and non-pregnant females remains unknown. Here, we examined the differences in viral loads, SARS-CoV-2-specific antibody titers, proinflammatory cytokines, and levels of T cell activation after SARS-CoV-2 sub-lethal infection between pregnant and non-pregnant human Angiotensin-Converting Enzyme II (ACE2) transgenic mouse models. Both mice showed elevated levels of viral loads in the lung at 4 days post-infection (dpi). However, viral loads in the pregnant group remained elevated at 7 dpi while decreased in the non-pregnant group. Consistent with viral loads, increased production of proinflammatory cytokines was detected from the pregnant group, and the IgM or SARS-CoV-2-specific IgG antibody in serum of pregnant mice featured delayed elevation compared with non-pregnant mice. Moreover, by accessing kinetics of activation marker expression of peripheral T cells after infection, a lower level of CD8+ T cell activation was observed in pregnant mice, further demonstrating the difference of immune-response between pregnant and non-pregnant mice. Although vertical transmission did not occur as SARS-CoV-2 RNA was absent in the uterus and fetus from the infected pregnant mice, a lower pregnancy rate was observed when the mice were infected before embryo implantation after mating, indicating that SARS-CoV-2 infection may interfere with mice's fertility at a specific time window. In summary, pregnant mice bear a weaker ability to eliminate the SARS-CoV-2 virus than non-pregnant mice, which was correlated with lower levels of antibody production and T cell activation.

14.
Front Pediatr ; 9: 645063, 2021.
Article in English | MEDLINE | ID: covidwho-1526780

ABSTRACT

Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, data registered in the European countries revealed increasing cases of infection in cystic fibrosis (CF) patients. In the course of this pandemic, we enrolled 17 CF patients for a study evaluating inflammatory markers. One of them developed COVID-19, giving us the possibility to analyze inflammatory markers in the acute phase as compared to levels detected before and after the infectious episode and to levels measured in the other CF patients enrolled to the study who did not experience COVID-19 and 23 patients referred to our center for SARS-CoV-2 infection.

15.
J Ethnopharmacol ; 282: 114574, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1373117

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY: Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS: To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS: Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS: These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Medicine, East Asian Traditional , Mucus/metabolism , Ovalbumin , Plant Extracts/therapeutic use , Animals , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/metabolism , Female , Flow Cytometry , Immunoglobulin E/immunology , Inflammation Mediators/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Pandemics , Th2 Cells/drug effects , Th2 Cells/immunology , Tryptamines/pharmacology
16.
Aging Cell ; 20(6): e13372, 2021 06.
Article in English | MEDLINE | ID: covidwho-1247110

ABSTRACT

Severe respiratory viral infectious diseases such as influenza and COVID-19 especially affect the older population. This is partly ascribed to diminished CD8+ T-cell responses a result of aging. The phenotypical diversity of the CD8+ T-cell population has made it difficult to identify the impact of aging on CD8+ T-cell subsets associated with diminished CD8+ T-cell responses. Here we identify a novel human CD8+ T-cell subset characterized by expression of Killer-cell Immunoglobulin-like Receptors (KIR+ ) and CD45RA (RA+ ). These KIR+ RA+ T cells accumulated with age in the blood of healthy individuals (20-82 years of age, n = 50), expressed high levels of aging-related markers of T-cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+ RA+ T cells were a major T-cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+ RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+ RA+ T cells are a unique human T-cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.


Subject(s)
Aging/physiology , CD8-Positive T-Lymphocytes/virology , T-Lymphocyte Subsets/virology , Aged , Aged, 80 and over , COVID-19/immunology , Female , Gene Expression Regulation , Humans , Influenza, Human/immunology , Male , Middle Aged , Receptors, KIR/blood , Receptors, KIR/metabolism , SARS-CoV-2
17.
Eur J Immunol ; 51(8): 2074-2085, 2021 08.
Article in English | MEDLINE | ID: covidwho-1212744

ABSTRACT

The aberrant release of inflammatory mediators often referred to as a cytokine storm or cytokine release syndrome (CRS), is a common and sometimes fatal complication in acute infectious diseases including Ebola, dengue, COVID-19, and influenza. Fatal CRS occurrences have also plagued the development of highly promising cancer therapies based on T-cell engagers and chimeric antigen receptor (CAR) T cells. CRS is intimately linked with dysregulated and excessive cytokine release, including IFN-γ, TNF-α, IL 1, IL-6, and IL-10, resulting in a systemic inflammatory response leading to multiple organ failure. Here, we show that mice intravenously administered the agonistic hamster anti-mouse CD3ε monoclonal antibody 145-2C11 develop clinical and laboratory manifestations seen in patients afflicted with CRS, including body weight loss, hepatosplenomegaly, thrombocytopenia, increased vascular permeability, lung inflammation, and hypercytokinemia. Blood cytokine levels and gene expression analysis from lung, liver, and spleen demonstrated a hierarchy of inflammatory cytokine production and infiltrating immune cells with differentiating organ-dependent kinetics. IL-2, IFN-γ, TNF-α, and IL-6 up-regulation preceded clinical signs of CRS. The co-treatment of mice with a neutralizing anti-cytokine antibody cocktail transiently improved early clinical and laboratory features of CRS. We discuss the predictive use of this model in the context of new anti-cytokine strategies to treat human CRS.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies/immunology , CD3 Complex/antagonists & inhibitors , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Animals , Antibodies/adverse effects , Antibodies, Monoclonal/therapeutic use , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokines/blood , Disease Models, Animal , Drug Therapy, Combination , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Mice , Phenotype , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
18.
Eur J Immunol ; 51(6): 1436-1448, 2021 06.
Article in English | MEDLINE | ID: covidwho-1156872

ABSTRACT

COVID-19 is a life-threatening disease leading to bilateral pneumonia and respiratory failure. The underlying reasons why a smaller percentage of patients present with severe pulmonary symptoms whereas the majority is only mildly affected are to date not well understood. Comparing the immunological phenotype in healthy donors and patients with mild versus severe COVID-19 shows that in COVID-19 patients, NK-/B-cell activation and proliferation are enhanced independent of severity. As an important precondition for effective antibody responses, T-follicular helper cells and antibody secreting cells are increased both in patients with mild and severe SARS-CoV-2 infection. Beyond this, T cells in COVID-19 patients exhibit a stronger activation profile with differentiation toward effector cell phenotypes. Importantly, when looking at the rates of pulmonary complications in COVID-19 patients, the chemokine receptor CCR4 is higher expressed by both CD4 and CD8 T cells of patients with severe COVID-19. This raises the hypothesis that CCR4 upregulation on T cells in the pathogenesis of COVID-19 promotes stronger T-cell attraction to the lungs leading to increased immune activation with presumably higher pulmonary toxicity. Our study contributes significantly to the understanding of the immunological changes during COVID-19, as new therapeutic agents, preferentially targeting the immune system, are highly warranted.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Lymphocyte Activation , Receptors, CCR4/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology , Adult , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Lung/pathology , Lung/virology , Male , Middle Aged , Severity of Illness Index
19.
Front Oncol ; 10: 1578, 2020.
Article in English | MEDLINE | ID: covidwho-782030

ABSTRACT

Patients with pre-existing comorbidities and immunosuppression are at greater risk for SARS-CoV-2 infection and severe manifestations of COVID-19. This also includes cancer patients, who are shown to have a poor prognosis after infection. Here, we describe the case of a 72-year old male patient with B-cell depletion after maintenance treatment with rituximab for non-Hodgkin-lymphoma who had a prolonged COVID-19 course and initial false negative test results. Our case highlights the diagnostic pitfalls in diagnosing COVID-19 in B-cell depleted patients and discuss the role of B-cell depletion in the course and treatment of COVID-19. Furthermore, we investigated peripheral blood monocytes and SARS-CoV-2 specific T cells in our patient. In conclusion, our case report can help physicians to avoid diagnostic pitfalls for COVID-19 in hemato-oncological patients under chemoimmunotherapy and tries to explain the role of B-cell depletion and SARS-CoV-2 specific T cells in this context.

20.
Eur J Immunol ; 50(9): 1412-1414, 2020 09.
Article in English | MEDLINE | ID: covidwho-615368

ABSTRACT

Study of immunological features of immune response in 14 children (aged from 12 days up to 15 years) and of 10 adults who developed COVID-19 show increased number of activated CD4 and CD8 cells expressing DR and higher plasmatic levels of IL-12 and IL-1ß in adults with COVID-19, but not in children. In addition, plasmatic levels of CCL5/RANTES are higher in children and adults with COVID-19, while CXCL9/MIG was only increased in adults. Higher number of activated T cells and expression of IL-12 and CXCL9 suggest prominent Th1 polarization of immune response against SARS-CoV2 in infected adults as compared with children.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , Chemokines/blood , SARS-CoV-2/immunology , Adolescent , COVID-19/immunology , COVID-19/pathology , Chemokine CCL2/blood , Chemokine CCL5/blood , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Interleukin-8/blood , Lymphocyte Activation , Lymphocyte Count , Lymphopenia/pathology , Male , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL